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Abstract
The intrinsic unsharpness of a quantum observable is studied by introducing
the notion of resolution width. This quantification of accuracy is shown to
be closely connected with the possibility of making approximately repeatable
measurements. As a case study, the intrinsic unsharpness and approximate
repeatability of position and momentum measurements are examined in detail.

PACS number: 03.64.Ta
Mathematics Subject Classification: 81P15, 81P05

1. Introduction

In quantum mechanics, unsharpness has a fundamental role and it has to be taken into account
also in theoretical studies. For instance, there is no joint measurement for sharp position
and momentum observables. Only unsharp position and momentum observables may allow
a joint measurement. Also, every measurement has some effect on the system and hence, an
unavoidable disturbance to the subsequent measurements.

In this paper we discuss a quantification of the intrinsic unsharpness of non-discrete
observables, such as position and momentum. For this purpose, we introduce the concept of
resolution width. It is the minimal size of intervals for which the corresponding effects have
suitable low degree of unsharpness.

It is a well-known fact that only discrete observables admit repeatable measurements
[1]. Hence, non-discrete observables can at best have approximately repeatable measurements
[2, 3]. We show that the resolution width is closely connected with the possibility of making
approximately repeatable measurements.

We examine the intrinsic unsharpness and approximate repeatability of position and
momentum measurements in detail. We also give a sufficient criterion assuring that discretized
versions of position and momentum observables admit repeatable measurements. A necessary
inaccuracy relation for any jointly measurable pair of position and momentum observables is
formulated using their resolution widths. Joint measurements are closely related to sequential
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measurements in the sense that a suitable kind of sequential measurement leads to a joint
observable. We show that any covariant phase space observable can be formed from a mixture
of certain kind of sequential measurements.

We shall proceed as follows. In section 2 we give some basic definitions and mathematical
facts related to the unsharpness of a quantum observable. The discussion of subsection 2.1
follows [4] and in subsection 2.2 we introduce the notion of resolution width, which is central
for everything that follows. In section 3 we review the definitions and some results on
approximately repeatable instruments. Also, the connection between resolution width and
approximate repeatability is demonstrated. Sections 4 and 5 deal with position measurements.
In this concrete case a rather complete analysis can be done. Finally, in section 6 we analyse
the role of resolution width and approximate repeatability in joint measurements of position
and momentum.

Concluding this section we fix the notation and recall some basic definitions; for further
details we refer to [5–7]. Let H be a complex separable Hilbert space. We denote by L(H)

and T (H) the algebra of bounded operators and the ideal of trace class operators on H,
respectively. A positive operator T ∈ T (H) of trace one is called a state and the set of all
states is denoted by S(H). A pure state is a one-dimensional projection and Pϕ denotes the
pure state generated by a nonzero vector ϕ ∈ H. A positive operator bounded from above by
the unit operator 11 is called an effect and the set of all effects is denoted by E(H).

Let � be a nonempty set and A a σ -algebra of subsets of �. A mapping E : A → E(H) is
an observable if it is σ -additive with respect to the weak operator topology and E(�) = 11. An
observable E which has only projections in its range, that is, E(X) = E(X)2 for any X ∈ A,
is conventionally called a sharp observable. We will mostly deal with observables defined on
B(R), the Borel σ -algebra of the real line R.

An operation (or state transformation) is a positive linear mapping � : T (H) → T (H)

which satisfies the condition 0 � tr[�(T )] � 1 for every T ∈ S(H). An instrument is
a mapping X �→ IX from B(R) to the set of operations, which satisfies the normalization
condition tr[IR(T )] = 1 for every T ∈ S(H) and is σ -additive in the sense that, whenever
T ∈ T (H) and (Xi) ⊂ B(R) is a sequence of disjoint Borel sets, then I∪iXi

(T ) = ∑
i IXi

(T )

where the sum converges in the trace-norm topology. In order to have a meaningful physical
interpretation, it is essential that an operation is completely positive [8]. We say that an
instrument I is completely positive if every operation IX,X ∈ B(R), is completely positive.
This also assures that the instrument is induced by a (normal) premeasurement [9, 10].

Each instrument I determines an associated observable E by the formula

tr[T E(X)] = tr[IX(T )], X ∈ B(R), T ∈ S(H). (1)

Any instrument satisfying condition (1) is called E-compatible.

2. Intrinsic unsharpness of an observable

2.1. Actualizability of effects

Let E : A → E(H) be an observable and X ∈ A.

Definition 1. An effect E(X) is actual in a state T if

tr[T E(X)] = 1. (2)

An effect which is actual in some state is actualizable.

Condition (2) means that a measurement outcome belongs to the set X with probability 1
when a measurement of the observable E is performed in the state T.
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An actualizable effect is actual in some pure state. Indeed, assume that an effect E(X) is
actual in a mixed state T. The state T has a (trace norm convergent) σ -convex decomposition
of the form

T =
∞∑
i=1

piTi, (3)

where (pi) is a sequence of positive numbers summing to 1 and (Ti) is a sequence of pure
states. We then have

1 = tr[T E(X)] =
∞∑
i=1

pi tr[TiE(X)],

which implies that tr[TiE(X)] = 1 for every i = 1, 2, . . .. For the reader’s convenience we
give a proof for the following elementary fact.

Proposition 2. An effect E(X) is actualizable if and only if it has eigenvalue 1.

Proof. If E(X) has eigenvalue 1 and ϕ is a corresponding eigenvector, then E(X) is actual in
the state Pϕ .

Now, assume that E(X) is an actualizable effect. Then there is a pure state T such that (2)
holds. This also means that there is a unit vector ψ ∈ H such that

〈ψ |E(X)ψ〉 = 1. (4)

Using the Cauchy–Schwarz inequality and the fact that E(X) � 11 we get

1 = |〈ψ |E(X)ψ〉| � ‖ψ‖ ‖E(X)ψ‖ = ‖E(X)ψ‖ � 1,

and therefore,

|〈ψ |E(X)ψ〉| = ‖ψ‖ ‖E(X)ψ‖ .

This implies that the vector E(X)ψ is a scalar multiple of ψ , i.e., E(X)ψ = αψ for some
α ∈ C. It then follows from (4) that α = 1. �

Every nonzero projection is an actualizable effect. It is easy to construct also other
examples. For instance, take two orthogonal unit vectors ϕ1 and ϕ2 and fix 0 < p < 1. Then
the effect Pϕ1 + pPϕ2 is actualizable but not projection. Generally, however, actualizability is
a strong requirement and often not fulfilled. Therefore, the following weakening is needed.

Definition 3. Let 1
2 � c < 1. An effect E(X) is c-actual in a state T if

tr[T E(X)] > c. (5)

An effect which is c-actual in some state is c-actualizable.

The reason for the restriction c � 1
2 is to avoid the situation where an effect E(X) and its

complement E(R�X) = 11−E(X) would both be c-actual in the same state. Moreover, since
c-actualizability is introduced as an approximation of actualizability, c can usually be thought
as a number close to 1.

Since E(X) is a positive operator, the operator norm can be expressed as

‖E(X)‖ = sup
T ∈S(H)

tr[T E(X)].

This leads to the following conclusion.

Proposition 4. An effect E(X) is c-actualizable if and only if ‖E(X)‖ > c.
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Assume that an effect E(X) is c-actual in a state T. Using a σ -convex decomposition as
in (3) for T, it is seen that there is a pure state Ti such that E(X) is c-actual in Ti . However,
unlike the case of an actualizable effect, there may be a pure state Ti in the decomposition of
T such that E(X) is not c-actual in Ti .

Definition 5. An effect E(X) is almost actualizable if it is c-actualizable for every 1
2 � c < 1.

As a direct consequence of proposition 4 we conclude that an effect E(X) is almost
actualizable if and only if ‖E(X)‖ = 1. If an effect E(X) is almost actualizable but not
actualizable, then 1 belongs to the spectrum of E(X) but it is not an eigenvalue.

The difference between actualizability and almost actualizability has been pointed out, for
instance, by Ballentine in [11, footnote 4]. It seems quite impossible to distinguish between
actualizability and almost actualizability in any practical situation. Therefore, we take almost
actualizability to represent the optimal reality content which an effect can have.

However, it is an interesting fact that in some cases the theoretical difference between
actualizability and almost actualizability is crucial. A physically relevant example is the
canonical phase observable, whose all nontrivial effects are almost actualizable but not
actualizable; see [12] and [13]. Other interesting examples are the localization observables of
a massless particle with non-zero helicity constructed by Castrigiano in [14]. He showed that
for these observables any effect corresponding to a bounded Borel set with non-void interior
is almost actualizable but not actualizable.

2.2. Resolution width

In the rest of the paper any observable E in consideration is, if not otherwise stated, defined on
B(R). In later sections we study position and momentum observables, which have the same
null sets as the Lebesgue measure. For our purposes in this section, it is enough to assume that
each observable E has the whole real line R as its support. This assumption is equivalent to
the condition that E(I ) 
= O for every open interval I ⊂ R. With some simple modifications
one could make a similar analysis for observables which are supported in an interval.

Let X ∈ B(R) and assume that E(X) is a c-actualizable effect for some fixed c. If
Y ∈ B(R) is such that X ⊆ Y , then E(X) � E(Y ) and therefore, also the effect E(Y ) is
c-actualizable. With this in mind, we may ask for the minimal width such that any effect E(I )

corresponding to an interval I bigger than this width is c-actualizable.
For any x ∈ R, r ∈ R+, we denote the open interval

(
x − r

2 , x + r
2

)
by Ix;r .

Definition 6. Let 1
2 � c < 1. We denote

γ (E; c) := inf{r > 0 | E(Ix;r ) is c-actualizable for every x ∈ R},
and say that γ (E; c) is the resolution width of E with confidence level c.

We adopt the definition inf ∅ = ∞, and thus, the range of possible values of γ (E; c) is the
closed interval [0,∞]. The function c �→ γ (E; c) from

[
1
2 , 1

)
to [0,∞] is increasing, that is,

c1 � c2 ⇒ γ (E; c1) � γ (E; c2). (6)

It is natural to give the following definition.

Definition 7. We denote

γ (E; 1) := lim
c→1−

γ (E; c),

and say that γ (E; 1) is the resolution width of E with confidence level 1.
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Proposition 8.

γ (E; 1) = inf{r > 0 | E(Ix;r ) is almost actualizable for every x ∈ R}. (7)

Proof. Let us first note that by (6), we can write definition 7 alternatively as γ (E; 1) =
sup 1

2 �c<1 γ (E, c), while the right-hand side of equation (7) can be rewritten as inf{r > 0 |
‖E(Ix;r )‖ = 1∀x ∈ R} =: M . From this it is evident that γ (E; c) � M for each 1

2 � c < 1.
Hence, γ (E; 1) = sup 1

2 �c<1γ (E; c) � M . Fix now δ > 0, then γ (E, 1) + δ > γ (E, c)

for each 1
2 � c < 1. It follows that ‖E(Ix;γ (E,1)+δ)‖ > c for every 1

2 � c < 1 so that
‖E(Ix;γ (E,1)+δ)‖ = 1. This being true for each δ > 0 we can conclude that γ (E, 1) � M , and
the claim now follows. �

The function γ (E; ·) is a description of the intrinsic unsharpness, or inaccuracy, of the
observable E. Typically, a single number γ (E; c) with a well-chosen confidence level c (or a
finite sample) gives enough information on the precision of E.

The best resolution width γ (E; 1) = 0 is achieved, for instance, when E is a sharp
observable. Also the worst case is possible, namely, that γ

(
E; 1

2

) = ∞. To give an example
of this latter situation, let λ be a probability measure on B(R) and define an observable E
by formula E(X) = λ(X)11. If I and J are two disjoint intervals, then either λ(I) � 1

2 or
λ(J ) � 1

2 . This implies that γ
(
E; 1

2

) = ∞.

3. Approximately repeatable instruments

A measurement is said to be repeatable if its repetition does not give a new result (from a
probabilistic point of view). The quantum theory of sequential measurements leads naturally
to the following formulation of repeatability; see, for instance, [15].

Definition 9. An instrument I is repeatable if for all T ∈ S(H) and X ∈ B(R),

tr[IX(IX(T ))] = tr[IX(T )].

It is a well-known result that an instrument I can be repeatable only if its associated
observable E is discrete [1], that is, there is a countable subset X ⊂ R such that E(X) = 11.
Under this precondition, a necessary and sufficient requirement in order that there exists an
E-compatible repeatable instrument is that all the nonzero effects E(X) are actualizable; see,
for instance, [16, section II.3.5].

To understand the properties and operational meaning of non-discrete observables, one is
forced to seek alternatives to definition 9. To formulate two existing proposals, we denote for
each X ⊆ R and ε > 0,

Xε :=
⋃
x∈X

Ix;ε =
{
y ∈ R | |x − y| <

ε

2
for some x ∈ X

}
.

Definition 10. Let I be an instrument, ε > 0 and 1
2 � c < 1.

(i) I is ε-repeatable if for all T ∈ S(H) and X ∈ B(R),

tr[IXε
(IX(T ))] = tr[IX(T )]. (8)

(ii) I is (ε, c)-repeatable if for all T ∈ S(H) and X ∈ B(R) such that tr[IX(T )] 
= 0,

tr[IXε
(IX(T ))] > c · tr[IX(T )]. (9)
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Here we clearly have a chain of properties: repeatability implies ε-repeatability, which,
in turn, implies (ε, c)-repeatability.

The concept of ε-repeatable instrument was introduced by Davies and Lewis in [3] to
replace the repeatability condition for non-discrete observables. They proved that if E is an
observable such that any effect E(I ) corresponding to an interval I is actualizable, then for
each ε > 0, there exists an E-compatible instrument which is ε-repeatable [3, theorem 4].

As ε-repeatability requires that the associated observable has actualizable effects, one
needs more relaxed concept for general investigations. The important definition of an (ε, c)-
repeatable instrument was introduced in [2] and [15]; see also [16, section IV.1] and [17].

Assume that an observable E admits an (ε, c)-repeatable instrument I. This implies
that whenever E(X) 
= O, the effect E(Xε) is c-actualizable. Indeed, choose a state such
that tr[T E(X)] 
= 0. Then condition (9) implies that tr[TXE(Xε)] > c, where TX :=
IX(T )/tr[IX(T )].

Proposition 11. Let E be an observable whose support is R. If ε < γ (E; c), there is no
E-compatible instrument which is (ε, c)-repeatable.

Proof. Fix ε′ such that ε < ε′ < γ (E; c). By definition 6, there is x ∈ R such that
tr[T E(Ix;ε′)] � c for every T ∈ S(H). Choose X = Ix;ε′−ε, in which case Xε = Ix;ε′ . Then
E(X) 
= O but E(Xε) is not c-actualizable. This means, due to the discussion in the previous
paragraph, that there cannot be any (ε, c)-repeatable instrument. �

The following positive result on the existence of (ε, c)-repeatable instruments is a
modification of theorem 4 in [3].

Proposition 12. Let E be an observable, 1
2 � c < 1 and ε > 2 · γ (E; c). Then there is a

completely positive E-compatible instrument which is (ε, c)-repeatable.

Proof. For each n ∈ Z, denote by Xn the half-open interval
[

n
2 ε, (n+1)

2 ε
)

and choose a pure
state Pψn

such that the effect E(Xn) is c-actual in the state Pψn
. The formula

IX(T ) :=
∞∑

n=−∞
tr[T E(X ∩ Xn)]Pψn

defines an E-compatible instrument I.
Fix an orthonormal basis {ϕk} forH. Expanding the trace in this basis, each IX,X ∈ B(R),

can be written in the Kraus form

IX(T ) =
∞∑

k,n=−∞
Ak,nT A∗

k,n,

where

Ak,n := |ψn〉〈E(X ∩ Xn)
1
2 ϕk|.

Thus, the instrument I is completely positive; see, e.g., [8, section 3, theorem 1].
To prove that I is (ε, c)-repeatable, let X ∈ B(R) and T ∈ T (H). We then get

tr[IXε
(IX(T ))] =

∞∑
n=−∞

∞∑
k=−∞

tr[Pψk
E(Xε ∩ Xn)] tr[T E(X ∩ Xk)]

=
∞∑

k=−∞
tr[Pψk

E(Xε)] tr[T E(X ∩ Xk)].
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If X∩Xk 
= ∅, then Xk ⊆ Xε. This implies that either tr[T E(X∩Xk)] = 0 or tr[Pψk
E(Xε)] > c.

Assume now that tr[T E(X)] 
= 0, in which case tr[T E(X ∩ Xk)] 
= 0 at least for some k.
Therefore,

∞∑
k=−∞

tr[Pψk
E(Xε)] tr[T E(X ∩ Xk)] >

∞∑
k=−∞

c · tr[T E(X ∩ Xk)] = c · tr[IX(T )].
�

4. Intrinsic unsharpness of position observables

4.1. Definition of position observables

In the rest of this paper H = L2(R, dx). The canonical position observable, denoted by Q, is
the sharp observable defined as

[Q(X)ψ](x) = χX(x)ψ(x), X ∈ B(R),

where χX is the characteristic function of X.
Let ρ be a probability measure on R. The formula

Qρ(X) =
∫

ρ(X − x) dQ(x), X ∈ B(R), (10)

defines an observable Qρ , whose action on a function ψ ∈ H is given by

[Qρ(X)ψ](x) = ρ(X − x)ψ(x). (11)

We call Qρ a position observable; motivation for this terminology is briefly explained below.
Note that the canonical position observable Q is recovered from equation (10) when ρ = δ0,
the Dirac measure concentrated at the origin.

The observable Qρ has the same kinematical symmetry properties as the canonical position
observable Q. Namely, for every q, p ∈ R, define the unitary operators Uq and Vp by

(Uqψ)(x) = ψ(x − q), (Vpψ)(x) = eipxψ(x).

These unitary operators correspond to position shift and momentum boost, respectively. The
kinematical symmetry properties of Qρ can be expressed as

UqQρ(X)U ∗
q = Qρ(X + q), (12)

VpQρ(X)V ∗
p = Qρ(X). (13)

As proved in [18, proposition 1] and [19, proposition 8], the observables satisfying the
symmetry conditions (12) and (13) are in one-to-one correspondence with the probability
measures on R via formula (10).

An observable Qρ can be interpreted as an imprecise version or a smearing of the canonical
position observable Q, the probability measure ρ quantifying the inaccuracy. We refer to [16]
and [20] for discussions on the interpretation and properties of Qρ .

4.2. Resolution width of a position observable

Since a position observable has the simple form (10), we can express the corresponding
resolution width γ (Qρ; c) in terms of the probability measure ρ. We denote by ess supx∈Rf (x)

the essential supremum of a function f : R → R with respect to Lebesgue measure.

Proposition 13. Let Qρ be a position observable and 1
2 � c < 1. Then

γ (Qρ; c) = inf{r > 0 | ess sup
x∈R

ρ(Ix;r ) > c} (14)

and this is a finite number.
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Proof. The covariance condition (12) implies that for any x ∈ R,

‖Qρ(Ix;r )‖ = ‖UxQρ(I0;r )U ∗
x ‖ = ‖Qρ(I0;r )‖. (15)

Since Qρ(I0;r ) is a multiplicative operator in L2(R, dx), we have

‖Qρ(I0;r )‖ = ess sup
x∈R

ρ(I0;r + x) = ess sup
x∈R

ρ(Ix;r ),

and hence, the resolution width γ (Qρ; c) has the claimed form.
As

lim
r→∞ ρ(I0;r ) = ρ(R) = 1,

there is an interval I0;R such that ρ(I0;R) > c. Fix δ > 0. Then for every x ∈ I0;δ , we have
I0;R ⊆ Ix;R+δ and hence, ρ(Ix;R+δ) > c. Therefore,

ess sup
x∈R

ρ(Ix;R+δ) � ess sup
x∈I0;δ

ρ(Ix;R+δ) > c.

This shows that γ (Qρ; c) � R. �

Let us note that the translation covariance of Qρ makes an estimation of the resolution
width more achievable than for observables in general. Indeed, if one finds a state T such that
the effect Qρ(I0;r ) is c-actual in T, then by equation (15) one concludes that γ (E; c) � r .

To formulate the following result, we denote by diam X the diameter of a set X ⊆ R, i.e.,
diam X := sup{|x − y| | x, y ∈ X}. We also recall that the support of a probability measure
λ on B(R) can be expressed as supp λ = ∩{X ⊆ R | X closed, λ(X) = 1}.
Proposition 14. Let Qρ be a position observable. Then

γ (Qρ; 1) = diam supp ρ. (16)

The proof of proposition 14 follows easily from the next lemma. We emphasize that
γ (Qρ; 1) may be infinite.

Lemma 15. Let r > 0.

(i) If ess supx∈Rρ(Ix;r ) = 1, then diam supp ρ � r .
(ii) If diam supp ρ < r , then ess supx∈Rρ(Ix;r ) = 1.

Proof.

(i) Suppose ess supx∈Rρ(Ix;r ) = 1. For each α > 0, denote

Bα = {x ∈ R | ρ(Ix,r ) � 1 − α}.
Since ρ is bounded, Bα is a bounded set. We then have Bα 
= ∅ and Bα ⊂ Bβ if α < β.
Choose xn ∈ B1/n∀n ∈ N. Let (xnk

)n∈N be a convergent subsequence, and let x be its
limit. Thus, ∀δ > 0∃kδ ∈ N such that k � kδ implies Ix,r+δ ⊃ Ixnk

,r . So, ρ(Ix,r+δ) �
ρ(Ixnk

,r ) � 1 − 1/nk for all k � kδ . It follows that ρ(Ix,r+δ) = 1. Hence

ρ(Ix,r ) = ρ(∩δ>0Ix,r+δ) = lim
δ→0+

ρ(Ix,r+δ) = 1,

i.e. supp ρ ⊂ Ix,r .
(ii) Suppose diam supp ρ = r ′ < r . Let x be such that supp ρ ⊂ Ix,r ′ . Since Ix,r ′ ⊂ Ix,r

for all x ∈ (x − (r − r ′)/2, x + (r − r ′)/2), so that ρ(Ix,r ) = ρ(Ix,r ′) = 1 for such x’s,
and the interval (x − (r − r ′)/2, x + (r − r ′)/2) has nonzero Lebesgue measure, we have
ess supx∈Rρ(Ix,r ) = 1. �
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Proof of proposition 14. Let r = γ (Qρ; 1) (possibly r = ∞). Then r is fixed by the
conditions: (a) ess supx∈Rρ(Ix,r ′) = 1 for all r ′ > r; (b) ess supx∈Rρ(Ix,r ′) < 1 for all r ′ < r

(if r = ∞, condition (a) is trivial). From (a) and item (i) in the lemma, diam supp ρ � r

follows. Now suppose diam supp ρ = r ′ < r . Let ε > 0 be such that r ′ < r ′ + ε < r . By item
(ii) in the lemma, ess supx∈Rρ(Ix,r ′+ε) = 1, a contradiction. Hence, diam supp ρ = r . �

It is a direct consequence of proposition 14 that the best resolution width γ (Qρ; 1) = 0 is
achieved only if ρ is the Dirac measure δx for some x ∈ R, which is the case exactly when Qρ

is a sharp position observable; see also [18, proposition 4] for a related characterization. A
natural relaxation is to require that γ (Qρ; 1) is a finite (but nonzero) number. In this case the
uncertainty of a measurement result can be made negligible whenever outcome sets are bigger
than γ (Qρ; 1). Another interesting possibility is that γ (Qρ; c) = 0 for some 1

2 � c < 1. This
means that a measurement of Qρ is efficient enough to discriminate arbitrarily small intervals
if uncertainty of 1 − c is tolerated. This situation is characterized in propositions 16.

Proposition 16. Let Qρ be a position observable and 1
2 � c < 1. The following conditions

are equivalent:

(i) γ (Qρ; c) = 0;
(ii) there exists x ∈ R and a probability measure λ with x ∈ supp λ such that

ρ = cδx + (1 − c)λ. (17)

Proof. Assume that (i) holds. By proposition 13 this means that

∀r > 0 : ess sup
x∈R

ρ(Ix;r ) > c. (18)

For each r > 0, denote

Ar = {x ∈ R | ρ(Ix;r ) > c}.
Since r1 < r2 implies Ar1 ⊆ Ar2 , it follows from (18) that Ar 
= ∅ for every r > 0. For each
n = 1, 2 . . . , we choose an element xn ∈ A1/n. We then have ρ(Ixn;1/n) > c, and since ρ is a
finite measure, the sequence (xn)n�1 is bounded. Hence, there exists a subsequence (xnk

)k�1

converging to some x ∈ R. For each β > 0, there exists k such that Ixnk
;1/nk

⊂ Ix;β , so that
ρ(Ix;β) > c. Thus,

ρ({x}) = ρ(∩β>0Ix;β) = lim
β→0

ρ(Ix;β) � c.

It follows that λ = (1 − c)−1ρ − c(1 − c)−1δx is a probability measure. For any β > 0,
we have λ(Ix;β) = (1 − c)−1(ρ(Ix;β) − c) > 0, which implies that x ∈ supp λ. Thus,
(i) implies (ii).

Assume that (ii) holds and let r > 0. Then

ess sup
x∈R

ρ(Ix;r ) = ess sup
x∈R

{
cχIx,r

(x) + (1 − c)λ(Ix,r )
}

� ess sup
x∈Ix,r

{
cχIx,r

(x) + (1 − c)λ(Ix,r )
}

= c + (1 − c) · ess sup
x∈Ix,r

λ(Ix,r ).

Since x ∈ supp λ, it follows that λ(Ix,r/2) = ε > 0. For any x ∈ Ix,r/2, we have Ix,r ⊃ Ix,r/2,
and therefore λ(Ix,r ) � ε. Thus,

ess sup
x∈R

ρ(Ix;r ) � c + (1 − c)ε > c,

which means that γ (Qρ; c) � r . As this holds for every r > 0, we get (i). �
Proposition 16 shows, especially, that γ (Qρ; c) = 0 can hold only if Qρ is a mixture

(convex combination) of a sharp position observable and some other position observable.
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5. Approximate repeatability of position measurements

Since we have shown in proposition 13 that γ (Qρ; c) is a finite number for every 1
2 � c < 1,

it follows from proposition 12 that Qρ admits (ε, c)-repeatable instruments for any confidence
level 1

2 � c < 1 whenever ε is chosen big enough. In subsection 5.1 we show that a position
observable admits also a covariant instrument which has better approximate repeatability
property than that used in the proof of proposition 12. In subsection 5.2 we discuss the
possibility of discretizing a position observable to achieve repeatability.

5.1. Approximately repeatable covariant instrument

Let E be an observable, T0 ∈ S(H), and define

IX(T ) :=
∫

X

UxT0U
∗
x tr[T E(dx)], X ∈ B(R), T ∈ S(H). (19)

This formula defines an E-compatible instrument I.

Proposition 17. The instrument I is completely positive.

Proof. Let X ∈ B(R). The dual mapping I∗
X of IX is

I∗
X(B) =

∫
X

tr[UxT0U
∗
x B] dE(x), B ∈ L(H).

The mapping IX is completely positive exactly when I∗
X is completely positive, and thus, we

need to show that I∗
X is N-positive for each N = 1, 2, . . .; see, e.g., [8, section 2]. Fix N and

let ψi ∈ H and Bjk ∈ L(H) for 1 � i, j, k � N . Then

∑
ijk

〈ψi |I∗
X(B∗

jiBjk)ψk〉 =
∑
ik

∫
X

tr


∑

j

BjkUxT0U
∗
x B∗

ji


 〈ψi | dE(x)ψk〉. (20)

By the Naimark dilation theorem, there exist a Hilbert space H̃, an isometry W : H → H̃, and
a sharp observable F : B(R) → E(H̃) such that E(X) = W ∗F(X)W for all X ∈ B(R). It is
not restrictive to assume that H̃ is the Hilbert space L2(R, µ;K), where µ is a Borel measure
on R, K is an infinite dimensional Hilbert space K, and F is given by

[F(X)φ](x) = χX(x)φ(x).

(This follows from the fact that we do not assume the dilation to be minimal. For the relevant
form of the spectral theorem, see e.g. [21, section IX.10].) We thus have

〈ψi | dE(x)ψk〉 = 〈(Wψi)(x)|(Wψk)(x)〉 dµ(x),

and the right-hand term in the equation (20) can be written as

∫
X

∑
ik

tr


∑

j

BjkUxT0U
∗
x B∗

ji


 〈(Wψi)(x)|(Wψk)(x)〉 dµ(x) =

∫
X

tr[C(x)D(x)] dµ(x),

where for each x ∈ R we have introduced the N × N -matrices C(x) and D(x),

C(x)ki = tr


∑

j

BjkUxT0U
∗
x B∗

ji




D(x)ik = 〈(Wψi)(x)|(Wψk)(x)〉.
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Since these matrices are positive semidefinite, we have∫
tr[C(x)D(x)] dµ(x) =

∫
tr
[
C(x)

1
2 D(x)C(x)

1
2
]

dµ(x) � 0,

and the claim follows. �

The instrument I satisfies the covariance condition

UqIX(U ∗
q T Uq)U

∗
q = IX+q(T ), q ∈ R, X ∈ B(R), T ∈ S(H),

exactly when the associated observable E is translation covariant. Davies has proved that if
E is a translation covariant sharp observable, then any E-compatible covariant instrument has
the form (19) for some T0 ∈ S(H) [22, theorem 3]. Moreover, as noted by Busch and Lahti in
[2, section 3.1], a translation covariant sharp observable has ε-repeatable instrument of the
form (19) for each ε > 0. They also pointed out that any position observable has (ε, c)-
repeatable instrument of the type (19) for suitable numbers ε and c. In the next proposition
we make this observation explicit using the concept of resolution width.

Proposition 18. Let Qρ be a position observable and 1
2 � c < 1. For each ε > γ (Qρ; c),

there is a Qρ-compatible instrument of the form (19) which is (ε, c)-repeatable.

Proof. Since ε > γ (Qρ; c), there is a state T0 ∈ S(H) such that tr[T0Qρ(I0,ε)] > c. Let I be
the instrument generated by T0. For any T ∈ S(H) and X ∈ B(R), we get

tr[IXε
(IX(T ))] = tr[IX(T )Qρ(Xε)]

=
∫

X

tr[UxT0U
∗
x Qρ(Xε)] tr[T Qρ(dx)]

=
∫

X

tr[T0Qρ(Xε − x)] tr[T Qρ(dx)].

For every x ∈ X, we have I0,ε ⊂ Xε − x, hence tr[T0Qρ(Xε − x)] > c. Therefore, whenever
tr[T Qρ(X)] 
= 0, we get

tr[IXε
(IX(T ))] >

∫
X

c tr[T Qρ(dx)] = c · tr[IX(T )],

as claimed. �

5.2. Discrete version of a position observable

Let E be an observable and let {Xn} be a sequence of disjoint measurable sets such that
E(∪nXn) = 11. For each n, we denote

Ẽ({n}) = E(Xn). (21)

This equation defines an observable Ẽ. The observable Ẽ is clearly discrete and we say that
Ẽ is a discrete version of E. We emphasize that the properties of Ẽ depend not only on the
observable E but also on the sequence {Xn}. Generally, there is no preferential choice of the
sequence {Xn}.

Let Qρ be a position observable. We fix a number r > 0 and denote Xn = Inr;r for every
n ∈ Z. Then Qρ

(∪∞
n=1 Xn

) = 11, and thus, equation (21) defines a discrete version Q̃ρ of Qρ .

Proposition 19. The effect Qρ(I0;r ) is actualizable if and only if

diam supp ρ < r. (22)
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Proof. Let us first note that Qρ(I0;r ) has eigenvalue 1 if and only if there is X ∈ B(R)

with positive Lebesgue measure such that ρ(Ix,r ) = 1∀x ∈ X. Assume that this condition
holds and let x1, x2 ∈ X, x1 
= x2. Then |x1 − x2| < r , since otherwise ρ

(
Ix1,r ∪ Ix2,r

) =
ρ
(
Ix1,r

)
+ ρ

(
Ix2,r

) = 2, contradicting ρ(R) = 1. We have

1 = ρ
(
Ix1,r ∪ Ix2,r

) = ρ
(
Ix1,r

)
+ ρ

(
Ix2,r

) − ρ
(
Ix1,r ∩ Ix2,r

)
= 2 − ρ

(
Ix1,r ∩ Ix2,r

)
,

so that ρ(Ix1,r ∩ Ix2,r ) = 1. This implies that supp ρ ⊂ Ix1,r ∩ Ix2,r , hence diam supp ρ < r .
Conversely, suppose that diam supp ρ < r . Then there exists x ∈ R and r ′ < r such that

supp ρ ⊂ Ix,r ′ . If |x − x| < (r − r ′)/2, then Ix,r ′ ⊂ Ix,r , so ρ(Ix,r ) = 1. The claim follows
since such x’s form a set of positive Lebesgue measure. �

Recalling the discussion after definition 9, propositions 14 and 19 lead to the following
result.

Corollary 20. The discrete observable Q̃ρ admits a repeatable instrument if and only if
γ (Qρ; 1) < r .

We conclude that to obtain a discrete version Q̃ρ of Qρ which would have a repeatable
instrument, one has to choose the partitioning intervals of the outcome space R strictly bigger
than the resolution width γ (Qρ; 1). A necessary precondition for this is, obviously, that
γ (Qρ; 1) has to be finite.

6. Joint measurements of position and momentum

The problem of joint measurability of position and momentum observables in quantum
mechanics has a long history and different viewpoints have been presented. Naturally, an
analysis of this problem depends on the definitions of position and momentum observables,
and the concept of joint measurability.

In subsection 6.1 we fix the setting of the current discussion. We then show in
subsection 6.2 that the product of the resolution widths of jointly measurable position and
momentum observables has a positive lower bound. In subsection 6.3 we investigate the
connection between sequential measurements and joint measurements.

6.1. Definitions

The canonical momentum observable, denoted by P, is the sharp observable defined as

P(Y ) = F−1Q(Y )F, Y ∈ B(R), (23)

where F is the Fourier–Plancherel transformation on H. Generally, a momentum observable is
defined as a velocity boost covariant and translation invariant observable. Thus, an observable
E : B(R) → E(H) is a momentum observable if, for all q, p ∈ R and Y ∈ B(R),

VpE(Y )V ∗
p = E(Y + p), (24)

UqE(Y )U ∗
q = E(Y ). (25)

Similarly as in the case of position observables, a probability measure ν defines a momentum
observable Pν through the formula

Pν(Y ) :=
∫

ν(Y − y) dP(y), Y ∈ B(R), (26)
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and all momentum observables have this form. Since Q and P satisfy the relation (23), the
results of section 4 and 5 are directly applicable to the case of momentum observables.

A position observable Qρ and a momentum observable Pν are jointly measurable if there
exists an observable G : B(R2) → E(H) such that for all X, Y ∈ B(R),

Qρ(X) = G(X × R), Pν(Y ) = G(R × Y ).

In this case we say that G is a joint observable of Qρ and Pν , and also that Qρ and Pν are the
margins of G; for motivation and details see, for instance, [23].

An observable G : B(R2) → L(H) is a covariant phase space observable if for all q,

p ∈ R and Z ∈ B(R2),

UqVpG(Z)V ∗
p U ∗

q = G(Z + (q, p)). (27)

As shown, for instance, in [24], each covariant phase space observable G is generated by a
unique operator T ∈ S(H) such that G = GT ,

GT (Z) = 1

2π

∫
Z

UqVpT V ∗
p U ∗

q dq dp, Z ∈ B(R2). (28)

We recall that if a position observable Qρ and a momentum observable Pν have a joint
observable, then they also have a joint observable which is a covariant phase space observable;
see [19] and [25].

6.2. Inaccuracy relation

By [19, corollary 8], a position observable Qρ and a momentum observable Pν are
jointly measurable if and only if there is a Hilbert space K and a vector valued function
θ ∈ L2(R, dx;K) such that

dρ(x) = ‖θ(x)‖2 dx, dν(y) = ‖̂θ(y)‖2 dy, (29)

where θ̂ is the Fourier–Plancherel transform of θ . It is then a consequence of proposition 16
that for any confidence level c, the resolution widths γ (Qρ; c) and γ (Pν; c) are strictly positive.
The specific form (29) of the probability measures ρ and ν leads also to the following results,
demonstrating the interrelationship between the resolution widths γ (Qρ; c) and γ (Pν; c).

Proposition 21. Let Qρ and Pν be position and momentum observables which are jointly
measurable. Then

γ (Qρ; 1) · γ (Pν; 1) = ∞.

Proof. Let {ei} denote an orthonormal basis of K. The functions appearing in formula (29)
can be written as

θ =
∑

i

θ iei and θ̂ =
∑

i

θ̂ iei (30)

where each θ i belongs to L2 (R, dx).
Suppose that γ (Qρ; 1) < ∞. Due to proposition 14, we then have diam supp ρ < ∞. This

implies that each θ i is confined to a bounded interval. Hence, each θ̂ i does not vanish on any
interval (see for instance [26, section 2.9]). Therefore, diam supp ν = R. By proposition 14
this means that γ (Pν; 1) = ∞. �

Proposition 22. Let Qρ and Pν be position and momentum observables which are jointly
measurable. For any confidence levels c1, c2 ∈ [

1
2 , 1

]
, we have

γ (Qρ; c1) · γ (Pν; c2) � 2π(c1 + c2 − 1)2. (31)
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Proof. Let θ ∈ L2(R, dx;K) be such that (29) holds and let c1, c2 ∈ [
1
2 , 1

)
. Since the function

x �→ ρ(Ix;r ) =
∫ x+r/2

x−r/2
‖θ(x ′)‖2 dx ′

is continuous and goes to 0 when |x| → ∞, formula (14) gives

γ (Qρ; c1) = inf
{
r > 0

∣∣ max
x∈R

ρ(Ix;r ) > c1
}
. (32)

Similarly,

γ (Pν; c2) = inf
{
s > 0

∣∣ max
y∈R

ν(Iy;s) > c2
}
. (33)

Let α > γ (Qρ; c1) and β > γ (Pν; c2). By formulae (32) and (33), this means that there
exist x̄, ȳ ∈ R such that∫ x̄+α/2

x̄−α/2
‖θ(x)‖2 dx > c1,

∫ ȳ+β/2

ȳ−β/2
‖̂θ(y)‖2 dy > c2. (34)

We recall the decomposition (30) of θ . As shown in [27] and [28], each θ i ∈ L2 (R, dx)

satisfies
1

‖θ i‖2

(∫ x̄+α/2

x̄−α/2
|θ i(x)|2 dx +

∫ ȳ+β/2

ȳ−β/2
|θ̂ i (y)|2 dy

)
� 1 +

√
λ0,

where λ0 is the largest eigenvalue of the positive trace class operator Q(Ix̄;α)P (Iȳ;β)Q(Ix̄;α).
Since ‖θ(x)‖2 = ∑

i |θ i(x)|2 and
∑

i ‖θ i‖2 = 1, we conclude that∫ x̄+α/2

x̄−α/2
‖θ(x)‖2 dx +

∫ ȳ+β/2

ȳ−β/2
‖̂θ(y)‖2 dy � 1 +

√
λ0,

and this with (34) gives

c1 + c2 < 1 +
√

λ0. (35)

The eigenvalue λ0 has the following upper bound:

λ0 � tr[Q(Ix̄;α)P (Iȳ;β)Q(Ix̄;α)] = tr[Q(Ix̄;α)P (Iȳ;β)] = αβ

2π
; (36)

for the last equality, see e.g. [29]. Thus, combining (35) and (36) we get

c1 + c2 < 1 +

√
αβ

2π
. (37)

Since α and β can be chosen arbitrarily close to γ (Qρ; c1) and γ (Pν; c2), inequality (31)
follows.

By proposition 21 we have γ (Qρ; 1) · γ (Pν; 1) = ∞. Therefore, to complete the proof it
is enough to consider the product γ (Qρ; 1) · γ (Pν; c2) for c2 
= 1. We then have

γ (Qρ; 1) · γ (Pν; c2) � γ (Qρ; c1) · γ (Pν; c2) � (c1 + c2 − 1)2

for every 1
2 � c1 < 1. This implies that

γ (Qρ; 1) · γ (Pν; c2) � c2
2,

and hence, (31) holds. �

If c1 = c2 = 1
2 , then (31) does not give a positive lower bound for the product of the

resolution widths. Actually, in this case there exist jointly measurable position observable Qρ

and momentum observable Pν with the product γ
(
Qρ; 1

2

) · γ (
Pν; 1

2

)
arbitrarily small; this is a

consequence of theorem 2 in [27]. Concerning this situation, we note that the related claim in
[18, proposition 13] is incorrect.
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6.3. Sequential measurements

Let us consider a sequential measurement of a position observable Qρ and a momentum
observable Pν . Suppose that Qρ is measured first and the state change is given by a Qρ-
compatible instrument I, which satisfies the covariance and invariance conditions:

UqIX(U ∗
q T Uq)U

∗
q = IX+q(T ), (38)

VpIX(V ∗
p T Vp)V ∗

p = IX(T ), (39)

for every q, p ∈ R, X ∈ B(R) and T ∈ S(H). We denote by I∗
X : L(H) → L(H) the dual

mapping of IX. Then G, defined by the condition

G(X × Y ) := I∗
X(Pν(Y )), X, Y ∈ B(R), (40)

is the joint observable corresponding to the sequential measurement. (As proved, for instance,
in [30, theorem 4.5], formula (40) determines a unique observable G on B(R2)). Also, it
follows from (38) and (39) that

UqVpG(X × Y )V ∗
p U ∗

q = G(X × Y + (q, p))

for every q, p ∈ R and X, Y ∈ B(R), so that G is a covariant phase space observable. Since

Qρ(X) = I∗
X(11) = G(X × R),

ρ is absolutely continuous with respect to the Lebesgue measure (see the beginning of
subsection 6.2). The other margin

Pν ′(Y ) := I∗
R
(Pν(Y )) = G(R × Y )

depends on the instrument I. Generally, Pν ′ differs from Pν since the position measurement
disturbs the system.

Summarizing, if Qρ admits a covariant and invariant instrument, it is a margin of a
covariant phase space observable and, in particular, ρ is absolutely continuous with respect
to the Lebesgue measure. In the following we show that the converse is also true, namely, if
ρ is absolutely continuous then there is a Qρ-compatible instrument which is covariant and
invariant. Moreover, we show that any covariant phase space observable GT generated by
a projection T = Pφ can be formed in the previously described manner from a sequential
measurement.

Fix a unit vector φ ∈ H = L2(R, dx). For each ϕ1, ϕ2 ∈ H and X ∈ B(R), let
I

φ

X(|ϕ1〉〈ϕ2|) be the integral operator with kernel

K
ϕ1,ϕ2
X (x, y) = ϕ1(x)ϕ2(y)

∫
χX(z)φ(x − z)φ(y − z) dz,

that is, [
I

φ

X(|ϕ1〉〈ϕ2|)ψ
]
(x) =

∫
K

ϕ1,ϕ2
X (x, y)ψ(y) dy. (41)

With the notation f̌ (x) = f (−x) we can write the kernel K
ϕ1,ϕ2
X in two alternative forms

K
ϕ1,ϕ2
X (x, y) = ϕ1(x)ϕ2(y)[(φ(· + x)χ̌X(·)) ∗ φ̌](−y)

= ϕ1(x)ϕ2(y)[(φ(· + y)χ̌X(·)) ∗ φ̌](−x).

Since the convolution of two L2-functions is a bounded function, we conclude that K
ϕ1,ϕ2
X is

in L2(R2, d2x) and so, I
φ

X (|ϕ1〉〈ϕ2|) is a bounded (actually, Hilbert–Schmidt) operator from
L2 (R, dx) into L2 (R, dx). Moreover, the mapping I

φ

X extends by linearity to the space of
finite rank operators, which is a dense subspace in T (H).
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Proposition 23. Formula (41) determines a unique instrument Iφ whose associated observable
is Qρ , with dρ(x) = |φ(−x)|2 dx. The instrument Iφ satisfies covariance and invariance
conditions (38) and (39).

Proof. We first show that for all ϕ1, ϕ2 ∈ H the operator I
φ

X (|ϕ1〉〈ϕ2|) is trace class. For all
ψ ∈ L2 (R, dx), an easy computation gives〈

ψ
∣∣Iφ

X (|ϕ1〉〈ϕ2|) ψ
〉 =

∫
χX(x)[(ϕ2ψ) ∗ φ̌](x)[(ϕ1ψ) ∗ φ̌](x) dx. (42)

For each ϕ ∈ L2(R, dx), we define the operator B
ϕ

X by the formula

(B
ϕ

Xψ)(x) = χX(x)[(ϕ̄ψ) ∗ φ̌](x)

=
∫

B
ϕ

X(x, y)ψ(y) dy,

where

B
ϕ

X(x, y) = χX(x)ϕ(y)φ(y − x).

Since the kernel B
ϕ

X(·, ·) is in L2(R2, d2x), the operator B
ϕ

X is Hilbert–Schmidt. By
equation (42) we have〈

ψ
∣∣Iφ

X(|ϕ1〉〈ϕ2|)ψ
〉 = 〈

B
ϕ1
X ψ

∣∣Bϕ2
X ψ

〉 = 〈
ψ

∣∣(Bϕ1
X

)∗
B

ϕ2
X ψ

〉
for all ψ ∈ L2 (R, dx), so that I

φ

X(|ϕ1〉〈ϕ2|) = (
B

ϕ1
X

)∗
B

ϕ2
X is a trace class operator.

Equation (42) shows that I
φ

X(Pϕ) � 0, and hence, using spectral decomposition we
conclude that I

φ

X(T ) � 0 if T is a positive finite rank operator.
We now show that I

φ

X is trace-norm bounded on finite rank operators, so that it uniquely
extends to a bounded operator I

φ

X : T (H) → T (H). By decomposition of an operator into its
self-adjoint and skew-adjoint parts, we see that it is enough to show that

∥∥I
φ

X(T )
∥∥

tr
� C ‖T ‖tr

for all T self-adjoint and with finite rank (we denote by ‖·‖tr the trace class norm). So, let T
be finite rank and self-adjoint, and let T = T+ − T− be its decomposition into positive and
negative parts. Let T± = ∑n±

i=1 λ±
i Pϕ±

i
be the spectral decompositions of the two parts. Since

I
φ

X(T±) are positive operators, denoting by ‖·‖HS the Hilbert–Schmidt norm, we have∥∥I
φ

X(T±)
∥∥

tr
= tr

[
I

φ

X(T±)
] =

∑
i

λ±
i tr

[
I

φ

X

(
Pϕ±

i

)]
=

∑
i

λ±
i tr

[(
B

ϕ±
i

X

)∗
B

ϕ±
i

X

] =
∑

i

λ±
i

∥∥B
ϕ±

i

X

∥∥2
HS

=
∑

i

λ±
i

∫ ∫ ∣∣Bϕ±
i

X (x, y)
∣∣2

dx dy

=
∑

i

λ±
i

∫ (∫
χX(x)|φ(y − x)|2 dx

) ∣∣ϕ±
i (y)

∣∣2
dy

≡
∑

i

λ±
i

〈
ϕ±

i

∣∣Qρ(X)ϕ±
i

〉 = tr[T±Qρ(X)], (43)

where dρ(x) = |φ(−x)|2 dx. Hence,∥∥I
φ

X(T )
∥∥

tr
�

∥∥I
φ

X(T+)
∥∥

tr
+

∥∥I
φ

X(T−)
∥∥

tr
� ‖Qρ(X)‖(‖T+‖tr + ‖T−‖tr ) = ‖Qρ(X)‖‖T ‖tr ,

and the boundedness of I
φ

X follows. Note that if T ∈ T (H) is positive, then equation (43)
implies that

tr
[
I

φ

X(T )
] = tr[T Qρ(X)]. (44)
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If T = ∑
i λiPϕi

is a positive element of T (H) (not necessarily with finite rank) then, by
continuity of I

φ

X and monotone convergence theorem, equation (42) gives〈
ψ

∣∣Iφ

X(T )ψ
〉 =

∫
X

∑
i

λi |[(ϕiψ) ∗ φ̌](x)|2 dx.

Hence, the map X �→ 〈
ψ

∣∣Iφ

X(T )ψ
〉

is a positive Borel measure and its density with respect
to the Lebesgue measure is

∑
i λi |[(ϕiψ) ∗ φ̌](x)|2. In particular, the map B(R) � X �→

I
φ

X(T ) ∈ L(H) is σ -additive when L(H) is endowed with the weak operator topology. Since
I

φ

X(T ) is positive for each X, the map B(R) � X �→ I
φ

X(T ) ∈ T (H) is σ -additive in the
trace-norm topology. Thus, σ -additivity in the trace-norm topology for generic T ∈ T (H)

then follows.
We have thus shown that Iφ is an instrument, whose associated observable is Qρ by

equation (44).
Finally, from equation (42) we have〈

ψ
∣∣UqVpI

φ

X(V ∗
p U ∗

q PϕUqVp)V ∗
p U ∗

q ψ
〉 = 〈

V ∗
p U ∗

q ψ
∣∣Iφ

X(V ∗
p U ∗

q PϕUqVp)V ∗
p U ∗

q ψ
〉

=
∫

χX(z)|[((V ∗
p U ∗

q ϕ)(V ∗
p U ∗

q ψ)) ∗ φ̌](z)|2 dz

=
∫

χX(z)|[(ϕ̄ψ) ∗ φ̌](z + q)|2 dz

=
∫

χX+q(z)|[(ϕ̄ψ) ∗ φ̌](z)|2 dz

= 〈
ψ

∣∣Iφ

X+q(Pϕ)ψ
〉
,

and so conditions (38) and (39) are satisfied for all Pϕ ∈ S(H), hence for all T ∈ S(H). �

Note that if φ ∈ L∞(R) ∩ L2(R, dx), for each x ∈ R we can introduce the operator

Kx : L2(R, dx) → L2(R, dx), [Kxψ](y) = φ(y − x)ψ(y).

We have

[(ϕ̄ψ) ∗ φ̌](x) = 〈Kxϕ|ψ〉
so that equation (42) can be rewritten as〈
ψ

∣∣Iφ

X(|ϕ1〉〈ϕ2|)ψ
〉 =

∫
X

〈ψ |Kxϕ1〉〈Kxϕ2|ψ〉 dx =
〈
ψ

∣∣∣∣
∫

X

Kx |ϕ1〉〈ϕ2|K∗
x ψ

〉
dx.

We thus have for all T ∈ T (H)

I
φ

X(T ) =
∫

X

KxT K∗
x dx.

This kind of instrument was introduced in [22] and its properties have been studied in [2] and
[31]. A measurement theoretical model leading to this instrument has been analysed in [32].

Proposition 24. Let Pν be a momentum observable and let G be the covariant phase space
observable defined via the formula

G(X × Y ) = I
φ∗
X (Pν(Y )), X, Y ∈ B(R).

Then G = GT , where GT is the observable defined in (28) with

T =
∫

V ∗
x PφVx dν(x). (45)
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Proof. We show that G = GT by verifying that G(X ×Y ) = GT (X ×Y ) for all X, Y ∈ B(R).
This is indeed enough since the mapping (X, Y ) �→ G(X×Y ) determines a unique observable
on B(R2); see, for instance, [30, theorem 4.5].

For each ϕ ∈ H, we have (continuing with the notations of the proof of proposition 23)

〈ϕ|G(X × Y )ϕ〉 = tr
[
I

φ

X(Pϕ)Pν(Y )
]

= tr
[(

B
ϕ

X

)∗
B

ϕ

XF∗Qν(Y )F
] = ∥∥B

ϕ

XF∗Qν(Y )
1
2
∥∥2

HS
. (46)

Since the kernel B
ϕ

X(·, ·) is in L2(R2, d2x), by Fubini theorem there is a negligible set Z such
that B

ϕ

X(x, ·) is in L2 (R, dx) for all x ∈ R � Z. For such x’s and for all ψ ∈ L2 (R, dx), we
have [

B
ϕ

XF∗Qν(Y )
1
2 ψ

]
(x) = 〈

B
ϕ

X(x, ·)∣∣F∗Qν(Y )
1
2 ψ

〉
= 〈

Qν(Y )
1
2 FB

ϕ

X(x, ·)∣∣ψ 〉
= 〈

Qν(Y )
1
2 F∗Bϕ

X(x, ·)∣∣ψ 〉
=

∫
ν(Y − y)

1
2
[
F∗Bϕ

X(x, ·)](y)ψ(y) dy,

thus showing that B
ϕ

XF∗Qν(Y )
1
2 is the integral operator with kernel

�(x, y) = ν(Y − y)
1
2
[
F∗Bϕ

X(x, ·)](y)

= ν(Y − y)
1
2 (2π)−

1
2

∫
eiyzB

ϕ

X(x, z) dz

= (2π)−
1
2 ν(Y − y)

1
2 χX(x)

∫
eiyzϕ(z)φ(z − x) dz

= (2π)−
1
2 χX(x)ν(Y − y)

1
2 〈ϕ|VyUxφ〉.

(here we used the fact that B
ϕ

X(x, ·) is in L1 (R, dx) for all x to evaluate explicitly its inverse
Fourier transform). So we have∥∥B

ϕ

XF∗Qν(Y )
1
2
∥∥2

HS
=

∫ ∫
|�(x, y)|2 dx dy

= (2π)−1

〈
ϕ

∣∣∣∣
(∫ ∫

χX(x)ν(Y − y)VyUxPφU ∗
x V ∗

y dx dy

)
ϕ

〉

= (2π)−1

〈
ϕ

∣∣∣∣
(∫ ∫ ∫

χY (z + y)χX(x)VyUxPφU ∗
x V ∗

y dx dy dν(z)

)
ϕ

〉

= (2π)−1

〈
ϕ

∣∣∣∣
(∫ ∫ ∫

χY (y)χX(x)VyUxV
∗
z PφVzU

∗
x V ∗

y dx dy dν(z)

)
ϕ

〉
= 〈ϕ|GT (X × Y )ϕ〉. (47)

Comparing equations (46) and (47), equality G(X × Y ) = GT (X × Y ) follows. �

We recall that the correspondence T ↔ GT between operators in S(H) and the covariant
phase space observables is one-to-one (see e.g. [19, proposition 13]). In particular, an
observable GT is an extremal point in the convex set of covariant phase observables exactly
when T is a projection. This is our motivation for the following statement.

Proposition 25. The generating operator T defined in equation (45) is a projection if and only
if the momentum observable Pν is sharp.
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Proof. If Pν is sharp, then ν = δx for some x ∈ R and equation (45) gives T = V ∗
x PφVx =

PV ∗
x φ .

Assume then T is a projection, so that it has eigenvalue 1. Let ψ be a corresponding
eigenvector ψ of unit norm. Then

1 = 〈ψ |T ψ〉 =
∫

|〈φ|Vxψ〉|2 dν(x),

implying that |〈φ|Vxψ〉| = 1 for every x ∈ supp ν. This shows that if x, y ∈ supp ν, then Vxψ

and Vyψ are proportional to φ, and so φ is an eigenvector of the operator Vx−y . But Vx−y has
eigenvectors only if Vx−y = 11, i.e., x = y. Thus, supp ν consists only of one point. �

Now we turn to the question of the approximate repeatability of the instrument Iφ .

Lemma 26. Suppose A ∈ L(H) commutes with Q. Then tr
[
AI

φ

X(T )
] = tr

[
I

φ

X(AT )
]

for all
T ∈ S(H).

Proof. It is not restrictive to assume that A is positive, so that there exists a function α ∈
L∞(R, dx), with α � 0, such that (Aψ)(x) = α(x)ψ(x); see, for instance, [33, section 75].
With the notations of the proof of proposition 23, we have

tr
[
AI

φ

X(Pϕ)
] = tr

[
A

(
B

ϕ

X

)∗
B

ϕ

X

] = ∥∥A
1
2
(
B

ϕ

X

)∗∥∥
HS

.

The operator A
1
2
(
B

ϕ

X

)∗
is the integral operator with kernel

K(x, y) = α(x)
1
2 χX(y)ϕ(x)φ(x − y),

so that ∥∥A
1
2
(
B

ϕ

X

)∗∥∥
HS

=
∫ ∫

|K(x, y)|2 dx dy

=
∫

α(x)

(∫
χX(y)|φ(x − y)|2 dy

)
|ϕ(x)|2 dx

=
∫

α(x)ρ(X − x)|ϕ(x)|2 dx = 〈ϕ|Qρ(X)Aϕ〉

= tr
[
I

φ

X(APϕ)
]
,

where dρ(x) = |φ(−x)|2 dx. This proves the lemma for T = Pϕ . The claim for general
T ∈ S(H) then follows. �

Proposition 27. The instrument Iφ has the following properties.

(i) Iφ is ε-repeatable for any ε > 2 · γ (Qρ; 1).
(ii) If γ (Qρ; 1) = ∞, there is no ε > 0 and 1

2 � c � 1 such that Iφ is (ε, c)-repeatable.

Proof.

(i) Let ε > 2 · γ (Qρ; 1), which by proposition 14 means that ε > 2 · diam supp ρ. Using
lemma 26 we get

tr
[
I

φ

Xε

(
I

φ

X(Pϕ)
)] = tr

[
Qρ(Xε)

(
I

φ

X(Pϕ)
)] = tr

[
I

φ

X(Qρ(Xε)Pϕ)
]

= tr[Qρ(X)Qρ(Xε)Pϕ]

=
∫

ρ(Xε − x)ρ(X − x)|ϕ(x)|2 dx. (48)
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On the other hand

tr
[
I

φ

X(Pϕ)
] = tr[Qρ(X)Pϕ]

=
∫

ρ(X − x)|ϕ(x)|2 dx. (49)

If ρ(X − x) > 0 for some x ∈ R, then (X − x) ∩ supp ρ 
= ∅, so that supp ρ ⊂ Xε − x,
and then ρ(Xε − x) = 1. The claim then follows comparing equations (48) and (49).

(ii) Assume that Iφ is (ε, c)-repeatable. As noticed in (i), lemma 26 implies that

tr
[
I

φ

Xε

(
I

φ

X(T )
)] = tr[Qρ(Xε)Qρ(X)T ]

for any T ∈ S(H). Hence, the requirement that

tr
[
I

φ

Xε

(
I

φ

X(T )
)]

> c · tr
[
I

φ

X(T )
] ∀T ∈ S(H)

is equivalent with

〈ψ |Qρ(Xε)Qρ(X)ψ〉 > c〈ψ |Qρ(X)ψ〉 ∀ψ ∈ H, ψ 
= 0.

This means that ρ(Xε − x)ρ(X − x) > cρ(X − x) for almost all x. So, we must have
ρ(Xε − x) > c for almost all x such that ρ(X − x) > 0, and, since x �→ ρ(X − x) is a
continuous function, this amounts to ρ(Xε −x) > c for all x ∈ A := {x | ρ(X−x) > 0}.
If γ (Qρ; 1) = ∞, then diam supp ρ = ∞. Take X = I0,r with r > 0, in which case the
set A is unbounded. Since ρ(Xε − x) > c for all x ∈ A, this is in contradiction with
ρ(R) = 1. �

Finally, we note that proposition 21 together with proposition 27 lead to the following
trade-off relation between the approximate repeatability of a position measurement and the
corresponding momentum disturbance. Consider again the sequential measurement procedure
described in the beginning of this subsection, where a measurement of Qρ is followed by a
measurement of Pν . If the Qρ-compatible instrument Iφ is (ε, c)-repeatable for some ε and c,
then the position measurement disturbs the system in such a way that the actually measured
momentum observable Pν ′ has γ (Pν ′ ; 1) = ∞.
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Sanomain 100-vuotissäätiö are gratefully acknowledged. The authors want to thank Paul
Busch and Pekka Lahti for helpful comments on an earlier version of this paper and for their
proposed improvement in proposition 22.

References

[1] Ozawa M 1985 Conditional probability and a posteriori states in quantum mechanics Publ. RIMS, Kyoto Univ.
21 279–95

[2] Busch P and Lahti P 1990 Some remarks on unsharp quantum measurements, quantum nondemolition, and all
that Ann. Phys. 47 369–82

[3] Davies E B and Lewis J T An operational approach to quantum probability Commun. Math. Phys. 17 239–60
[4] Busch P 1986 Unsharp reality and joint measurements for spin observables Phys. Rev. D 33 2253–61
[5] Busch P, Lahti P J and Mittelstaedt P 1996 The Quantum Theory of Measurement 2nd edn (revised) (Berlin:

Springer)
[6] Davies E B 1976 Quantum Theory of Open Systems (London: Academic)
[7] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland)

http://dx.doi.org/10.1007/BF01647093
http://dx.doi.org/10.1103/PhysRevD.33.2253


Intrinsic unsharpness and approximate repeatability 1323

[8] Kraus K 1983 States, Effects, and Operations (Berlin: Springer)
[9] Busch P and Lahti P 1990 Completely positive mappings in quantum dynamics and measurement theory Found.

Phys. 20 1429–39
[10] Ozawa M 1984 Quantum measuring processes of continuous observables J. Math. Phys. 25 79–87
[11] Ballentine L 1970 The statistical interpretation of quantum mechanics Rev. Mod. Phys. 42 358–81
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